
October 19, 2014
McDonnell Academy 5th International Symposium
Workshop on Clean Utilization of Coal

Daniel Giammar¹, Wei Xiong¹, Fei Wang¹, Sophia Hayes², Jeremy Moore², J. Andrew Surface², Catherine Peters³, Bin Guo³, Anurag Mehra⁴

¹Washington University Dept. Energy, Environmental, and Chemical Engineering
²Washington University Department of Chemistry
³Princeton University Department of Civil and Environmental Engineering
⁴Indian Institute of Technology Bombay Department of Chemical Engineering

Acknowledgments

Jill Pasteris
Mark Conradi
Dustin Crandall, Grant Bromhal, Bryan Tennant, Johnathan Moore (NETL)
Carbon Sequestration

The IPCC Special Report on Carbon dioxide Capture and Storage, 2005
Sequestration in Magnesium-Rich Formations

Most target formations are sandstones, but mafic (Fe- and Mg-rich) rocks are alternative formations with high mineral trapping capacity.

Continued fracturing of the rock may be promoted by temperature and volume changes from reactions.

Pilot-scale tests in magnesium-rich basalts in Washington State and Iceland.

Also applicable to \textit{ex situ} mineral carbonation in engineered reactors.
When and where do carbonate minerals precipitate in systems with high solid:water ratios and with mass transfer limitations? How does precipitation affect transport properties?
Aquifers have high water-rock ratios and pores of varying sizes.
Conditions in diffusion-limited zones may be much different than in the bulk.
Tubular Reactor Experiments

Tube packed with forsterite particles is open to well-mixed CO$_2$-rich solution at the top.

Experimental Parameters
- Tube length = 5 cm
- Tube diameter = 1 cm
- Porosity = 0.48
- Volume of batch reactor = 200 cm3
- Particle diameters = 5-40 µm
Extent of carbonate formation is spatially localized.

Carbonate minerals continue to form even below the zone of maximum carbonate precipitation.

• Magnesite (MgCO$_3$) forms in the forsterite bed just below the interface with the well-mixed CO$_2$-rich solution.

• Hydromagnesite (Mg$_2$(CO$_3$)(OH)$_2$) forms deeper in the bed.
Progress of Carbonate Mineral Formation

- Magnesite (MgCO₃) becomes the dominant product.
- Extent of carbonate formation is spatially localized.
In Situ Monitoring with 13C NMR

High pressure zirconia reaction vessel for in situ 13C NMR measurements of mineral-water-CO$_2$ reactions.

In Situ Monitoring of Reactions

- 13C NMR can track the in-growth of magnesium carbonate.
- Spatially-resolved NMR found solid carbonates predominantly at a depth of ~1 cm into the bed of forsterite.

80 °C, 105-120 bar CO$_2$-forsterite-water

In Situ Monitoring: X-ray CT

In situ X-ray Computed Tomography (CT)
- Industrial CT scanner at the National Energy Technology Laboratory (NETL) in Morgantown
- Voxel resolution 14.7 μm
- Tube scanned before and during reaction.
- San Carlos olivine reacted for 60 days at 100°C and 100 bar CO$_2$.

The reconstructed image for the bed has 1978 slices.
Reactive Transport Modeling

Tubular Reactor

\[
\frac{\partial c_{Mg,t}}{\partial t} = D_{Mg} \frac{\partial^2 c_{Mg,t}}{\partial z^2} + R_{Mg, Fo}
\]

accumulation diffusion dissolution

\[
r_{diss, Fo} = k_0 e^{-\frac{E_a}{RT}} \times \left\{ H^+ \right\}^{nH^+} \left(1 - \frac{IAP}{K_{sp}} \right) = \frac{1}{2} r_{Mg, Fo}
\]

\[
R_{Mg, Fo} = r_{Mg, Fo} \cdot \frac{\text{surface area}}{\text{volume}}
\]

Boundary conditions (BCs)

At \(z = L \), \(- D_{Mg} \frac{\partial c_{Mg,t}}{\partial z} = 0 \)

At \(z = 0 \), \(c_{Mg,t} = c_{Mg,b} \)

Initial condition (IC)

At \(t = 0 \), \(c_{Mg,t} = c_{Mg,b} = 0 \)

- Similar mole balance for dissolved inorganic carbon (DIC).
- Determine pH at each time and location based on charge balance.
- Dissolution rate affected by pH.
Evolution of Composition in Tube

• Gradients develop in pH, dissolved Mg, and dissolved inorganic carbon.
• The saturation index calculated for the region of maximum magnesite precipitation provides information on the necessary conditions for carbonate mineral formation.

\[SI_{\text{magnesite}} = \log \left(\frac{Mg^{2+} \cdot CO_{3}^{2-}}{K_{sp}} \right) \]
Conclusions and Implications

• Carbonate precipitation is spatially localized.
• Geochemical gradients lead to local reaction rates and products much different from volume-averaged properties.
• Carbonate-rich zone did not block access of dissolved carbon to react with forsterite deeper in the bed.

Remaining Questions

• How do reactions proceed in fractured rocks?
• What volume of a mafic rock is available for sequestration?
• Will carbonate mineral precipitation impede or accelerate sequestration?
New DOE Project on Fractured Basalts

Impact of microstructure on the containment and migration of CO₂ in fractured basalts

- Dan Giammar
- Sophia Hayes
- Phil Skemer
- Mark Conradi
- Brian Ellis (Michigan)

October 1, 2014 – September 30, 2017

Cost-sharing provided by the Consortium for Clean Coal Utilization was critical.

Post-reaction X-ray μCT imaging
Localized Mineral Trapping in Geologic Carbon Sequestration

Questions?
giammar@wustl.edu